
Journal of Systems Architecture 51 (2005) 185–205

www.elsevier.com/locate/sysarc
A generalized fault-tolerant sorting algorithm on a
product network q

Yuh-Shyan Chen a,*, Chih-Yung Chang b, Tsung-Hung Lin a, Chun-Bo Kuo a

a Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan, ROC
b Department of Computer Science and Information Engineering, Tamkang University, Taipei, Taiwan, ROC

Received 30 September 2000; received in revised form 6 March 2002; accepted 15 November 2004

Available online 30 December 2004
Abstract

A product network defines a class of topologies that are very often used such as meshes, tori, and hypercubes, etc.

This paper proposes a generalized algorithm for fault-tolerant parallel sorting in product networks. To tolerate r � 1

faulty nodes, an r-dimensional product network containing faulty nodes is partitioned into a number of subgraphs such

that each subgraph contains at most one fault. Our generalized sorting algorithm is divided into two steps. First, a sin-

gle-fault sorting operation is presented to correctly performed on each faulty subgraph containing one fault. Second,

each subgraph is considered a supernode, and a fault-tolerant multiway merging operation is presented to recursively

merge two sorted subsequences into one sorted sequence. Our generalized sorting algorithm can be applied to any prod-

uct network only if the factor graph of the product graph can be embedding in a ring. Further, we also show the time

complexity of our sorting operations on a grid, hypercube, and Petersen cube. Performance analysis illustrates that our

generalized sorting scheme is a truly efficient fault-tolerant algorithm.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Fault-tolerant; Product networks; Snake order; Odd–even sorting; Bitonic sorting
1383-7621/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.sysarc.2004.11.005

q A preliminary version of this paper were presented in

Proceedings of HPC 2000: 6th International Conference on

Applications of High-Performance Computers in Engineering,

Maui, Hawaii, January 26–28, 2000, and was supported by the

National Science Council, ROC, under contract no. NSC89-

2213-E-216-010.
* Corresponding author. Tel.: +886 5 272 0411; fax: +886 5

272 0859.

E-mail addresses: yschen@cs.ccu.edu.tw (Y.-S. Chen),

cychang@cs.tku.edu.tw (C.-Y. Chang), dust@cs.ccu.edu.tw

(T.-H. Lin), cbkuo@wmn.cs.ccu.edu.tw (C.-B. Kuo).
1. Introduction

A product network defines a class of topologies

that are very often used. Much research on prod-

uct networks has been reported in the recent

literature [6,8,10,12,13]. These networks have
interesting topological properties that make it

especially suitable for parallel algorithms. Exam-

ples of product networks include hypercubes,
ed.

mailto:yschen@cs.ccu.edu.tw
mailto:cychang@cs.tku.edu.tw
mailto:dust@cs.ccu.edu.tw
mailto:cbkuo@wmn.cs.ccu.edu.tw

186 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
grids, and tori. Many other product networks have

been recently proposed, such as products of de

Bruijn networks [10,18], products of Petersen

graphs [14], and mesh-connected trees. A consider-

able amount of research has been done on product
networks. Routing properties of product networks

were studied in [3,5]. Topological and embedded

properties of product networks were analyzed in

[10]. Further, a reliable routing problem was pro-

posed in [13]. Optimal fault-tolerant communica-

tion in a product network was considered in [12].

In addition, the VLSI complexity of product net-

works was analyzed in [9].
Many algorithms have been developed for the

special case of product networks. Examples can

be found in hypercubes and grids. The drawback

of these algorithms is that there is no portability

for different topologies. For example, a fault-toler-

ant sorting algorithm developed for a hypercube in

[4,19] will not work on a grid, even though both

hypercubes and grids are product networks. Re-
cently, Fernández and Efe [8] proposed a general-

ized sorting algorithm for product networks. The

main function of their algorithm is to propose a

multiway-merging operation. However, their algo-

rithm does not have fault-tolerant capability. The

main contribution of this paper is to develop a

generalized fault-tolerant sorting algorithm for

product networks. Our fault-tolerant sorting algo-
rithm is developed, which is based on Fernández

and Efes� sorting algorithm [8]. The fault-tolerant

sorting operation is achieved by offering a new

fault-tolerant multiway-merging operation. By

using this fault-tolerant multiway-merging opera-

tion, the fault-tolerant sorting algorithm is thus

developed for product networks.

Our generalized sorting algorithm is divided
into two steps. First, a single-fault sorting opera-

tion is presented to be correctly performed on each

faulty subgraphs, each of which contains at most

one fault. Second, each subgraph is considered a

supernode. A fault-tolerant multiway merging

operation is presented to recursively merge two

sorted subsequences into one sorted sequence.

Our generalized sorting algorithm can be applied
to any product network under the constraint that

the factor graph of the product graph can at least

be embedding in a ring. Two basic sorting opera-
tions, odd–even and bitonic sorting operations,

are used as the primitive operations. Note that

using odd–even or bitonic sorting operations as

primitive operations depends on the ability of

embedding the factor graph of the product graph
in a ring or hypercube. Let N be the number of

nodes of the factor graph and L the number of ele-

ments that each nonfaulty node contains. For any

r-dimensional product graph with Nr nodes, the

time complexity is bounded by O(r2N2L logL),

when using the odd–even sorting as the primitive

operation. In the case when each node contains

only one key (L = 1), the time complexity is
O(r2N2). When using bitonic sorting as the primi-

tive operation, the time is bounded by O(r2L logL

(log2N
2)2 + r2N2 + rNL logL(log2N)

2). In the case

when each node contains only one key (L = 1),

the time complexity is O(r2(log2N
2)2 + r2N2 +

rN(log2N)
2). The performance study on hyper-

cubes and Petersen cubes illustrates that the time

complexity of our generalized fault-tolerant sort-
ing algorithm is the same as that of the generalized

sorting algorithm proposed by Fernández and Efes

[8] when L = 1. Observe that Fernández and Efes�
sorting algorithm [8] does not provide the fault-

tolerant capability. This indicates that our pro-

posed fault-tolerant scheme is a truly efficient

algorithm.

The rest of this paper is organized as follows. In
Section 2, we describe the definitions and nota-

tions used in this paper. In Section 3, we present

our fault-tolerant sorting algorithm. In Section 4,

the time complexity of the proposed algorithm is

analyzed using several well-known product net-

works. The conclusions of this paper are drawn

in Section 5.
2. Preliminary

In this section, we first define some notations.

In Section 2.1, we formally define the product net-

work. In Section 2.2 we define the partitioning

property of a product network. Finally, we present

the snake ordering method for a product network
in Section 2.2.

The assumption here logically treats some pro-

cessors as faulty nodes and assigns no unsorted

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 187
element to them; the faulty nodes, as a result, can

run idle. The fault model can be classified into two

types. The most serious fault would be one that

completely destroys a processor and all links inci-

dent to it. Hastad et al. [11] called such faults total.
A less-serious fault, named a partial fault [11], is

one that destroys just the computational portion

of a processor, leaving the communication portion

of the processor as well as the incident links intact.

The faults total properties can be achieved by

rewriting a router to handle the fault-tolerant rout-

ing of message passing. The execution time will ex-

ceed that of the partial fault. Observe that, for
simplicity, this paper assumes the partial-fault

model.

2.1. Product network

An interconnected network is usually modeled

as an undirected graph G = (V,E) with the node-

set V and edge-set E. jGj (or jVj) denotes the num-
ber of nodes in G. Let G0 = (V0,E0) and G1 =

(V1,E1) be two finite undirected graphs. The prod-

uct of G1 and G0 is defined as G = (V,E) = G1 · G0
with the node-set V = V1 · V0 = {(x,y)jx 2 V1,

y 2 V0}. There is an edge {(x,y), (u,v)} in E if

either x = u and {y,u} 2 E0, or {x,u} 2 E1 and

y = v. The graphs G1 and G0 are called the factors

or component network of G. The product network
G consists of jV0j copies of G1, namely subgraphs
of G1y with the node-set {(x,y)jx 2 V1} and edge-

set {{(x,y), (x 0,y)}j{x,x 0} 2 E1}. Analogously, G

has jV1j copies xG0 of G0 induced by the node-

set{(x,y)jy 2 V0}. For instance, Fig. 1(a) and (b)
(a)

(b)
(c)

Fig. 1. Examples of p
illustrate two product networks constructed by

the product of G0 and G1 and that of G0 and G0,

respectively.

Definition 1. [8] The product network G = G1 · G0

of two undirected connected graphs G1 = (V1,E1)

and G0 = (V0,E0) is the undirected graph

G = (V,E), where V and E are given by:
(1) V = V1 · V0 = {(x,y)jx 2 V1,y 2 V0}, and

(2) an edge {(x,y), (u,v)} in E if either x = u and

{y,u} 2 E0, or {x,u} 2 E1 and y = v.

This definition can be generalized to a product

of n graphs as G = (V,E) = Gn�1 · � � � · G0, where

Gi = (Vi,Ei), 0 6 i 6 n � 1, such that V = Vn�1 ·
� � � · V0; E = {((xn�1 . . . x0), (yn�1 . . . y0))j(xi,yi) 2
Ei; and xj = yj, $i 2 {0, . . . ,n � 1}, for i5 j}. The

value i is called the dimension of the edge

{(xn�1, . . ., x0), (yn�1, . . ., y0)}. An interconnected
topology derived from several factor networks by

the product operation will henceforth be called a

product network. In this paper, we consider only

one-factor graphs under the self-product operation

since most popular networks, such as grids, tori,

and cubes, are generated by one-factor graphs.

This is because the popular interconnected graphs

have regular topologies and properties to design
efficient parallel algorithms.

Let PG1 = G. We can use the lower-dimensional

product graph PGr�1 to construct the higher-

dimensional product graph PGr. The construction

of PGr from PGr�1, where PG1 = G, is shown in

Fig. 2. Let x be a node of PGr�1, lx be the label
(d)

roduct graphs.

(a)

(b)
(c)

Fig. 2. Recursive construction of a multidimensional product network. (a) Factor graph; (b) two-dimensional product; (c) three-

dimensional product.

188 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
of node x, and N be the number of nodes of PG1.
Symbol [u]PGr�1 denotes the product graph ob-

tained by putting an additional digit u before the

label lx of every vertex x 2 PGr�1, for u =

0,1, . . . ,N � 1. The label lx of every vertex

x 2 PGr�1 becomes ulx. We logically describe the

construction of PGr from PGr�1. First, arrange

all vertices of PGr�1 one by one along the horizon-

tal (or vertical) direction. Then, make N copies of
PGr�1 along the vertical (or horizontal) direction

such that vertices with identical labels fall in the

same column. Next, relabel the uth copy of PGr�1
to obtain [u]PGr�1, for u = 0,1, . . . ,N � 1. Finally,

connect the corresponding nodes of [u]PGr�1 and

[u 0]PGr�1 if (u,u
0) 2 EG. Fig. 2 illustrates this con-

struction process for two- and three-dimensional

product graphs. The factor graph G is shown in
Fig. 2(a). Nodes in the ith row of Fig. 2(b) are la-

beled by putting an additional digit i before their

labels. Thus, the ith row in Fig. 2(b) can be viewed

as [i]PG1. In a similar way, PG3 is constructed in

Fig. 2(c). Since the operations described above

are logically the same as the product operation

‘‘ · ’’ defined in Definition 1, the PGr generated

by PGr�1 is also a product network.

2.2. Network partitioning

To perform the fault-tolerant sorting operation

on PGr, we begin by describing the partitioning of
PGr into N copies of PGr�1. The j-split operation
on PGr is defined by partitioning PGr along dimen-

sion j into N copies of PGj
r�1. Let D = (d1,d2,. . .,

dn), n < r. The D-split on PGr is the operation to

apply d1-split, d2-split, . . ., and dn-split operations

on PGr. For instance, the six-dimensional hyper-

cube is partitioned along dimensions 1, 4, and 5

by a D-split operation, where D = (1,4,5).

Theorem 2. We can obtain Nk copies of PGi1;...;ik
r�k by

partitioning PGr along k dimensions i1, i2, . . ., ik,

where k < r, and N is the number of nodes of the

factor graph.

The notation ½u�PGi
r�1 defines an ordering for

subgraphs PGr�1. In general, ½u�PGi
r�1 is the uth

copy of the PGr�1 subgraph at dimension i. The

subgraph ordering rule can be applied to the gen-
eral case of [u1, . . ., uk]PG

i1;...;ik
r�k in a number of dif-

ferent ways. We define a particular subgraph

ordering method, say snake ordering, with certain

useful properties for data sorting.

Definition 3. [8] The snake order for the r-

dimensional product graph PGr is defined as

follows:
(1) If r = 1, the snake order is the same as the

order used for labeling the nodes of G.
(2) Assume that the snake order has already been

defined for PGr�1, r > 1. Then

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 189
(a) ½u�PGr
r�1has the same order as PGr�1 if u

is even, and the reverse order if u is odd;

and

(b) if u < v then the order of all vertices in

½u�PGr
r�1 precedes the order of all vertices in

½v�PGr
r�1.

Example 4. Let N = 4. The snake order sequences

Qr of product graph PGr, for r = 1,2, and 3 are

listed as follows:
• for r = 1, Q1 = {0,1,2,3},

• for r = 2, Q2 = {00,01,02,03,13,12,11,10,20,

21,22,23,33,32,31,30},

• for r = 3, Q3 = {000,001,002,003,013, 012,011,
010,020,021,022,023,033,032,031,030,130,131,

132,133,123,122,121,120,110,111,112,113,103,

102,101,100,200,201,202,203,213,212,211,210,

220,221,222,223,233,232,231,230,330,331,332,

333,323,322,321,320,310,311,312,313,303,302,

301,300}.

Fig. 3 gives the snake order for product graph
PG3 considered in Fig. 2(c). As we mentioned be-

fore, if the factor graph of a product network

can be embedded in a ring, the odd–even sorting

operation is used as a single-fault algorithm exe-

cuted on each PG2. This covers most cases. Fur-

ther, if the factor graph can be embedded in a

hypercube, then a bitonic-like sorting operation

is adopted as a single-fault sorting algorithm exe-
cuted on each PG2.
Fig. 3. The snake order of the product network
3. Generalized fault-tolerant sorting algorithm

In our algorithm, a faulty product graph PGr is

partitioned into several subgraphs PG2, where

each PG2 contains at most one faulty node. This
is helpful for carrying out executing the single-

fault sorting algorithm. In this section, we offer a

generalized partition scheme for a faulty PGr.

The partition scheme partitions the faulty PGr into

Nr�2 copies of PG2 in which each PG2 contains at

most one faulty node. To tolerate one faulty node,

we propose two single-fault sorting operations for

each PG2 to ensure to obtain the correct sorting
order for elements on each PG2. However, we still

need to merge all elements node by node. For this

purpose, we modified the well-known multiway

merging operation [2] which originally had no

fault-tolerant capability. By putting together the

proposed single-fault sorting operation and the

modified multiway merging operation as a basic

operation, we developed a generalized multi-fault
sorting algorithm for a faulty product network.

We outline our generalized fault-tolerant sorting

algorithm in Fig. 4.

3.1. Partitioning scheme for faulty product networks

To tolerate up to r � 1 faults, we partition

faulty PGr into Nr�2 copies of PG2 by executing
a feasible D-split operation on PGr such that each

PG2 contains at most one faulty node. Based on a

similar partition scheme in a star graph [20], we

have the following property.
PG3 whose factor graph is a 4-node ring.

Fig. 4. Generalized fault-tolerant sorting algorithm for r-dimensional product network.

190 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
Lemma 5. In a PGr, r P 4, with f 6 r � 1 faulty

nodes, there always exists a D-split, jDj = r � 2, such

that PGr can be partitioned into PG2 by D-split and

each partitioned PG2 contains at most one faulty node.
The maximum number of faults that can toler-

ated in this paper is r � 1. For the condition of

f5 r � 1, there exist some partitioned PG2 with

no faulty node. Due to the regular operation and

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 191
balancing of the workload of each PG2, we deter-

mine a dangling node [19] in each nonfaulty PG2.

A node is said to be a dangling node if the node is

a healthy node but is assigned to no job or data

[19]. Nodes in a nonfaulty PG2 with the same posi-
tion ofmost faulty nodes in all other faultyPG2s will

be selected as a dangling node.We logically consider

the dangling node as a faulty node and assign no

data to it. For example, assume that PG3, shown

in Fig. 2(c), has the faulty set F = {023, 212}. A

three-split operation is applied toPG3 since the digit

in dimension three of the address of faulty nodes dif-

fers. A D-split with D = {3} will partition PG3 with
F into N copies of PG2, while two PG0

2s contain sets

F1 = {023} andF2 = {212}. The dangling nodemust

be determined for every healthy PG2.

3.2. Distributing unsorted keys

The next step is to distribute unsorted keys into

all nonfaulty nodes. Assume that there are M�
Nr unsorted elements. Since the total number of

nonfaulty nodes is Nr � Nr�2, each nonfaulty node

contains M/(Nr � Nr�2) =M/((N2 � 1)Nr�2) keys.

In the next subsection, we present the execution

of the single-fault sorting operation for each PG2.

3.3. Single-fault sorting operation

Two single-fault sorting operation algorithms

are given here for PG2 to sort M/Nr�2 keys into

ASCEND/DESCEND order. If a hypercube,

where n = log2 jGj, can be embedded into factor

graph G, we perform the single-fault bitonic sort-
(a) (b)

Fig. 5. Relabeling the processor number for a sub-product network

(b) relabeling the faulty node to position 00; (c) relabeling the proces
ing operation on each PG2. Otherwise, we perform

the single-fault odd–even sorting operation on

each PG2. For the ease of presentation, we first

present the single-fault odd–even sorting opera-

tion. The single-fault bitonic sorting operation is
then discussed.

Initially, a simple rotation operation is per-

formed based on the address of the faulty node.

The purpose of the rotation operation is to reset

the logical address of nodes such that the logical

address of the faulty node or dangling node can

be considered P0. For example, consider PG2 con-

taining a faulty node whose label is 23 as shown in
Fig. 5(a). After performing the rotation operation,

the faulty node�s address is 00 as shown in Fig.

5(b). Noted that the addresses of all nodes were

changed by the rotation operation shown in Fig.

5(b). According to snake order, we assign each

node a processor number as shown in Fig. 5(c).

The rotation operation logically makes the faulty

node of each PG2 to be P0.
Before executing the single-fault sorting opera-

tion, all nodes in PG2 should be assigned a proces-

sor number. If the odd–even sorting operation is

determined to apply to PG2, which is dependent

on the topology of the factor graph, the processor

is numbered according to the snake order. On the

other hand, if the bitonic sorting operation is

determined to apply to PG2, the processor is num-
bered according to the original labels� order. Rela-
beling of the original order is the same as that for

the snake order. We illustrate this with an example

in Fig. 6. Fig. 6(a) displays the original label se-

quence. In Fig. 6(b), we treat the faulty node as
(c)

according to the snake order. (a) The original labels of graph;

sor number for each node according to snake order.

(a) (b) (c)

Fig. 6. Relabeling the processor number for a sub-product network according to the original order. (a) The original labels of graph; (b)

relabeling the faulty node to 00; (c) relabeling the processor number according to the original labels� order.

192 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
having the logical address of P0. The labeling

shown in Fig. 6(b) is the same as that shown in

Fig. 5(b). Finally, we relabel each node with a pro-

cessor number according to the original order of

their labels. The processor number of each node

is shown in Fig. 6(c).

3.3.1. Single-fault odd–even sorting operation

The single-fault odd–even sorting operation con-

sists of n comparison-exchange stages for n adjacent

elements. As mentioned before, we apply the single-

fault odd–even sorting operation to each PG2 if the

factor graph G can be embedded in a Hamiltonian

cycle. The proposed odd–even sorting algorithm
with one fault is now described as follows. First,

we apply the sequential sorting algorithm, e.g.,

quick sorting or heap sorting, on each node for sort-

ing itsM/((N2 � 1)Nr�2) elements. Then, in the odd

step of the odd–even sorting algorithm, each pair of

nodes, Pn and Pn�1, where n is odd, is compared to

its sorted sequence element by element. Since P0 is

the faulty node, there is not need for either P0 or
P1 to undergo any comparison-exchange. In the

even step, each pair of nodes Pn and Pn�1, where

n is even, is compared to its sorted sequence element

by element. No node will perform the comparison-

exchange with P0. After each step of the odd–even

sorting algorithm, we also need to apply the sequen-

tial sorting algorithm to each node. Because the

faulty node P0 is at the first position, we consider
that the faulty node does not exist. The odd–even

sorting algorithm is only performed for nodes from

P1 to PN2�1. After the odd–even sorting, the data

will be kept in an ASCEND/DESCEND order

from P1 to PN2�1.
3.3.2. Single-fault bitonic sorting operation

The bitonic sorting algorithm [1,15–17] can also

work correctly on PG2 when the faulty node is at

P0. This result was indicated by Sheu et al. [19].

If the number of the factor�s node is N = 2k (k is

a constant) and the factor graph contains a
log2N-dimensional hypercube, then the bitonic

sorting algorithm can be applied. The bitonic sort-

ing algorithm consists of
Plog2n

i¼1 i comparison-

exchange stages for n elements.

First, the M/Nr�2 unsorted elements are uni-

formly distributed to N2 � 1 healthy nodes. The

faulty node P0 in PG2 is treated as a dead node.

We apply the sequential sorting algorithm, e.g.,
quick sorting or heap sorting, on each healthy

node for sorting its M/((N2 � 1)Nr�2) elements.

By applying the bitonic sorting algorithm, all M/

Nr�2 unsorted elements will be sorted at each node

of PG2 in order of their the addresses. Because the

factor graph has a hypercube structure, the bitonic

sorting algorithm can work correctly. The key

concept of the bitonic sorting algorithm is to
recursively execute the comparison-exchange oper-

ations on each pair of sorted subcubes such that

the first half of the elements are located in one sub-

cube and the last half of the elements are located in

another subcube. During execution of the bitonic

sorting operation, no node needs to perform any

operation to P0. One can assume that elements in

PG1 and PG0
1 are now respectively sorted in

ascending and descending order after executing

the bitonic sorting algorithm.

Now, we have proposed two sorting algorithms

which can work correctly on PG2 when the faulty

node is P0. The odd–even sorting algorithm can be

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 193
performed when the factor graph contains a ring

graph. The bitonic sorting algorithm can also be

performed when the number of nodes N = 2k in

the factor graph, and the factor graph has a

log2N-dimension hypercube structure. However,
irregardless of which of the proposed two single

fault sorting operations are applied, we can only

ensure that elements are sorted in order in each

PG2. In the next step, we perform the fault-toler-

ant multiway merging operation such that ele-

ments can be sorted among all PG2s.
3.4. Fault-tolerant multiway merging operation

Fernández and Efe proposed a generalized par-

allel sorting algorithm in [8]. The kernel function is

the multiway merging operation [2]. Before dis-

cussing the fault-tolerant multiway merging opera-

tion, we first define a fundamental operation,

namely the fault-tolerant comparison-exchange

operation. Our fault-tolerant merging operation
is built based on the fault-tolerant comparison-

exchange operation.
3.4.1. Fault-tolerant comparison-exchange

operation

Here we present the fault-tolerant comparison-

exchange operation between two adjacent sub-

graphs,PGi and PG
0
i, where i < r. The main function

of the fault-tolerant comparison-exchange opera-

tion is to perform the comparison-exchange opera-

tion between each pair of adjacent nodes, x and y,

when x 2 PGi and y 2 PG0
i, if PGi and PG0

i are both

faulty.

The fault-tolerant comparison-exchange opera-

tion is a recursive operation. Let FCE(PG2) denote

the fault-tolerant comparison-exchange operation
on any pair of copies of PG2. We describe the

fault-tolerant comparison-exchange operation as

follows. Every PG2 has exactly one faulty or dan-

gling node. Three possible cases are discussed

depending on the location of the faulty nodes:

f 2 PG2 and f 0 2 PG0
2. A column/row of a product

network is said to be a faulty column/row if it

contains a faulty node. Based on the property
of the product network, each pair of nodes, x

and y, located in the same location can logically
connect to each other by a path with length bN
2
c,

where x 2 PG2 and y 2 PG0
2. Now we discuss these

cases.

Case 1. Nodes f and f 0 are located in the same

physical location: Each node x5 f sends its data

to adjacent nodes y5 f 0 by a physical link and

performs the comparison-exchange operation.

The time complexity for sending data to adjacent

node is OðbN
2
cÞ.

Case 2. Nodes f and f 0 are located in the same

physical row: Two phases are needed in this
case.

1. Data-moving phase: Without loss of generality,

let Pi in PG2 and P 0
j in PG0

2 be faulty nodes,

where i < j. Processor sequence Pi+1,Pi+2, . . ., Pj

sends data to P 0
i; P

0
iþ1; . . . ; P

0
j�1 by 2-hop steps as

follows. Observe that this work can be correctly

performed since our fault model is assumed to
be the partial-fault one [19]. That is, a faulty

node can still perform its communication oper-

ation, and only the computation operation is

faulty. Each node Pk in Pi+1,Pi+2, . . ., Pj com-

municates with P 0
k, and then every P 0

k shifts

the received data to the neighboring processor

P 0
k�1. Therefore, P 0

i; P
0
iþ1; . . . ; P

0
j�1acquire data.

If i > j, a similar way can be applied. Nodes Pt

not located in the faulty row send data to node

P 0
t with the same processor number in PG0

2. The

time complexity of the data-moving phase is

thus OðbN
2
c þ 1Þ. Fig. 7 illustrates this operation.

Fig. 7(a) shows the processor numbering of

PG2, and Fig. 7(d) illustrates the same PG2 with

data which have been sorted in PG2 in an

ascending snake order. Fig. 7(b) illustrates the
data in nodes of the first row (the row is which

the faulty node is located) moving from PG2 to

PG0
2. Fig. 7(e) shows the data layout of PG

0
2 after

the data-moving operation is performed on

each node.

2. Rotation phase: All nodes except the faulty node

perform a rotation operation as follows. All

nodes in each row repeatedly shift to the right
one position until the node with the smallest

processor number arrives at the position j + 1.

The time complexity of the rotation phase is

(a) (b) (c)

(d) (e) (f)

Fig. 7. The FCE(PG2) operation executed on example of case 2 that faulty nodes of two PG2 are located at the same row. The

processor numbering is in snake order.

194 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
then O(N). Fig. 7(c) illustrates the result of the

rotation phase, and Fig. 7(f) illustrates the

resultant data layout of Fig. 7(c).

Case 3. Nodes f and f 0 are located in different

physical rows: Initially, a similar data-moving

phase as in Case 2 is performed. The only differ-

ence is that the number of faulty rows is greater

than one. Fig. 8(a) displays the processor number

of PG2, and Fig. 8(b) shows the result of the data-

moving operation performed from PG2 to PG0
2.

The next task is to perform a rotation operation.

This operation is divided into three phases.

1. Horizontal-rotation phase: Assume that the

faulty node is located in the jth-column, and

the row number of the first row is labeled 0.

A horizontal-rotation operation is performed

on each row as follows. For row numbers less

than the faulty row, all nodes in the row

repeatedly shift left/right one position until the
node with the maximum processor number
arrives in the jth-column. If the faulty row num-

ber is odd/even, all nodes in the faulty row

except for the faulty node repeatedly shift left/

right one position until a node with the larg-

est/smallest address arrives in the (j + 1)th-col-
umn. For the remaining rows, if the row

number is odd/even, all nodes in the row repeat-

edly shift left/right one position until the node

with the maximum/minimum address arrives

in the jth-column. The time complexity of the

horizontal-rotation phase is OðbN
2
cÞ. Fig. 8(c)

shows the result of the horizontal-rotation

operation.
2. Vertical-rotation phase: All nodes repeatedly

shift up/down one position until nodes in the

first row arrive in the faulty row. If all nodes

repeatedly shift up one position, then there is

no need for nodes in the jth-column to shift

up one position in the first step of the shift.

The time complexity of the vertical-rotation

phase is OðbN
2
cÞ. An example of a vertical-rota-

tion operation is shown in Fig. 8(d).

(a) (b) (c)

(d) (e)

Fig. 8. The FCE(PG2) opeartion executed on example of case 3 that faulty nodes of two PG2 are not at the same row. The processor

numbering is in snake order.

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 195
3. Tuning-rotation phase: Let g denote the gap

between the first row and the faulty row. A tun-

ing operation must be performed in the next g

rows beginning from the faulty row. The task

is performed as follows. Assume that the faulty
row is relabeled row 0. If the row number of

each row of these g rows is odd, it shifts to

the left one position. The time complexity of

the tuning-rotation phase is O(1). An example

of the tuning-rotation phase is shown in Fig.

8(e).
Lemma 6. The FCE(PG2) operation can be cor-

rectly executed within Oðb3
2
Nc þ 2Þ time steps if

the processor numbering sequence is in the snake

order.

Proof. The time complexity of one PG2 sending

data to another PG2 is OðbN2c þ 1Þ. In Case 1, there
is no rotation operation. The time complexities of
the rotation phases in Cases 2 and 3 are respec-

tively O(N) and O(N + 1). In total, the time com-

plexity of FCE(PG2) is Oðb3N2 c þ 2Þ. h

Now we consider the other case as follows. If

the factor graph has a hypercube structure, the

processor numbering operation will use the origi-

nal order of each label for each node. In the

following, we illustrate how the FCE(PG2)
operation is applied to PG2 if the processors are

numbered in the original order. Similar to the

FCE(PG2) operation using the snake order, we

also use three cases to discuss FCE(PG2) using

the original order. Basically, the operation in

Cases 1 and 2 is the same as the operation in the

snake order. In Case 3, the data-moving phase is

the same as that in Case 2. Additionally, three
rotation operation phases are described as follows.

1. Horizontal-rotation phase: Assume that the

faulty node is located in the jth-column, and

Fig. 9. The FCE(PGk) operation.

196 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
the row number of the first row is labeled 0. A

horizontal-rotation operation is performed on

each row as follows. For those rows whose

row number is less than that of the faulty row,

all nodes in the row repeatedly shift left/right
one position until the node with the maximum

address arrives in the jth-column. All nodes

in the faulty row except for the faulty node

repeatedly shift left/right one position until the

node with the smallest address arrives in the

j + 1th-column. For the remaining rows, all

nodes in the row repeatedly shift left/right one

position until the node with the minimum
address arrives in the jth-column. The time

complexity of the horizontal-rotation phase is

OðbN
2
cÞ.

2. Vertical-rotation phase: All nodes repeatedly

shift up/down one position until the first row

arrives in the faulty row. The time complexity

of the vertical-rotation phase is OðbN
2
cÞ.

3. Tuning-rotation phase: The tuning rotation
phase is the same as that for the snake order.

The time complexity of the tuning-rotation

phase is O(1).
Lemma 7. The FCE(PG2) operation can be cor-
rectly executed on PG2, and its time complexity is

bounded by Oðb3N
2
c þ 2Þ if the processor numbering

is in the original order.

The following theorem is derived based on re-
sults of Lemmas 6 and 7.

Theorem 8. The FCE(PGk) operation can be cor-

rectly executed in Oðb3N
2
c þ 2Þ time steps if the

processor numbering uses the snake order or the

original order, where k < r.

Proof. Recall that the FCE(PG2) operation can

work correctly on PG2. For the purpose of mak-

ing this operation correctly run on PGk, we

partition PGk and PG0
k into a number of PG2s.

Then each PG2 in PGk performs FCE(PG2) with
the corresponding PG2 in PG0

k. Finally, merge

PG2 in PGk (or PG0
k) into PGk (or PG0

k). So

FCE(PGk) can also be correctly executed in

Oðb3N
2
c þ 2Þ time steps. Fig. 9 illustrates this

operation. h
3.4.2. The fault-tolerant multiway merging

operation

The multiway merging operation was originally

used by Fernández and Efe [8] to perform a gener-

alized sorting algorithm on a product network.

The correctness can be verified by referring to

[8]. However, their multiway merging operation
does not have fault-tolerant capability. We present

a fault-tolerant multiway merging operation here.

By using the proposed fault-tolerant multiway

merging operation as a basic operation, we thus

develop a generalized fault-tolerant sorting algo-

rithm. The fault-tolerant multiway merging opera-

tion is divided into four phases. The proposed

multiway merging operation is a recursive algo-
rithm. For ease of presentation, a dimension vari-

able k, 2 < k < r, is used to denote the current

dimension in the recursive process.

We define the terms of a virtual PG2 and a vir-

tual PG2 sequence as follows. The virtual PG2 con-

sists of N copies of PG1. Any two PG1s in the

virtual PG2 may not be directly connected. The

structure of the virtual PG2 is similar to that of
PG2 except that communication of each pair of

neighboring PG1s may require more than one step

since a direct link might not exist between them.

The virtual PG2 sequence is the sequence of a num-

ber of virtual PG2s. Examples of a virtual PG2 and

a virtual PG2 sequence are shown in Fig. 10(a)

and (b).

(a)

(b)

Fig. 10. (a) The virutual PG2; (b) the virtual PG2 sequence.

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 197
Now we present the fault-tolerant multiway

merging operation here.

Fault-Tolerant_Multiway_Merge_Operation

(PGk)

{/* The PGk is partitioned into N copies of PGk�1
by applying a j-split operation, where j 2 D =

(d1,d2,. . .,dn).*/

1. Redistribution step: Basically, the redistribution

process is the same as the function of the redis-

tribution phase in [8] except for the operation of

k = 2. The goal of the redistribution step is to
collect unmerged data from different dimen-

sions. In the case of k = 2, we are not only

collecting unmerged data from different dimen-

sions, but also collecting data from all of the

faulty columns of every original PG2 to orga-

nize a virtual PG2. All the remaining virtual

PG2s are constructed according to order of the

faulty columns. For example, in Fig. 11(a), the
data layout shows that a PG3 has been parti-

tioned into four PG2s and a single-fault sorting

operation has been performed on each PG2. We
partition each PG2 into N copies of PG1, and

collect PG1 in each PG2 into a virtual PG2 as

shown in Fig. 11(b).

2. Merging step: If 3 6 k < r, for eachPGk�1 among

N copies of PGk�1, perform the Fault-Tolerant_

Multiway_Merge_Operation (PGk�1). Note that

if k = 2, single-fault sorting and FCE(PG2) are
performed on the virtual PG2 sequence. Fig.

12(a) illustrates the merging operation of PGk

when 3 6 k < r. Fig. 12(b) displays the construc-

tion of a number of virtual PG2s when k = 2. Fig.

12(c) displays the virtual PG2 after executing the

single-fault sorting and FCE(PG2).

3. Interleaving step: This task is a restoration oper-

ation which is opposite to the Redistribution

step. After executing this operation on PG2 as

shown in Fig. 13(a), we have the result shown

in Fig. 13(b).

4. Clear-dirty step: There are three parts of the

clear-dirty step. (1) For each PG2, sort its keys.

(2) Perform two odd–even transpositions

among the PG2 sequences. (3) For each PG2,

sort the keys again. For the correctness of the
clear-dirty step, refer to [8].

}

(a)

(b)

Fig. 11. Redistribution step. (a) Each PG2 performing a single-fault sorting operation; (b) construction of virtual PG2 from PG2.

198 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
4. Analysis of the time complexity of the

generalized fault-tolerant sorting algorithm

In this section, the time complexity of the gener-

alized fault-tolerant sorting algorithm is given.

Furthermore, we discuss the time complexity of a

torus, grid, hypercube, and the Petersen cube using
our generalized fault-tolerant sorting algorithm.

4.1. Generalized time complexity

To analyze the time complexity of generalized

fault-tolerant sorting algorithm, we first study
the time complexity of the sequential sorting algo-

rithm, the communication operation, and the

merging process for a k-dimensional product net-

work. We assume that each nonfaulty node con-

tains L keys, where L =M/(Nr � Nr�2) =M/

((N2 � 1)Nr�2). The time cost for the sequential

sorting algorithm to run on a node with L keys
is denoted Tss. Let T s2 denote the time complexity

required for sorting PG2, T s1 represent the time

complexity required for sorting PG in the virtual

PG2, and TMk be the multiway merging process

on a k-dimensional product network. We derive

the following lemma.

(a)

(b)

(c)

Fig. 12. The merge operation. (a) The merge operation performed on PGk; (b) construction of the virtual PG2 sequence from PGk;

(c) sorting and FCE(PG2) operations performed on each virtual PG2.

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 199

(a)

(b)

Fig. 13. Interleave step. (a) Snapshot of the virtual PG2 after executing merge step; (b) snapshot of the virtual PG2 after executing the

interleave step.

200 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
Lemma 9. Merging N sorted sequences of Nk�1

nodes on PGk takes TMk ¼ T s1T ssðN þ 1Þþ
ðb3N

2
c þ 2Þ � N þ 2ðk � 2ÞðT s2T ss þ b3N

2
c þ 2Þ time

steps.

Proof. Step 1 of the multi-fault sorting operation

takes no computation time. Step 2 is a recursive

call to the merging operation for k � 1 dimensions,

and hence requires a time cost of TMk�1 . Step 3

takes no computation time. Finally, step 4 requires

the time for one sorting operation on PG2, two

communication operations for PG2 (the time for
FCE(PG2)), and one more sorting operation for

PG2. Every time the keys are sorted, we need to

perform a sequential sorting algorithm which

takes Tss time steps. Therefore, the value of TMk

can be recursively expressed as:
TMk ¼ TMk�1 þ 2 T s2T ss þ
3N
2

� �
þ 2

� �� �
:

In the initial condition, for the two-dimensional

PG2, we perform the sorting operation in PG

N + 1 times, and comparison-exchange in the vir-

tual PG2 N times. Therefore, TM2
will be

TM2
¼ T s1T ssðN þ 1Þ þ 3N

2

� �
þ 2

� �
� N :

This yields

TMk ¼ T s1T ssðN þ 1Þ þ 3N
2

� �
þ 2

� �
� N

þ 2ðk � 2Þ T s2T ss þ
3N
2

� �
þ 2

� �� �
:

The time complexity of the fault-tolerant sort-
ing algorithm is FSr(N). h

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 201
Theorem 10. For any factor graph G, the time com-

plexity of the proposed fault-tolerant sorting algo-

rithm on PGr with f 6 r � 1 faulty nodes is

FSrðNÞ ¼ Oðr2T s2L log L þ r2N 2 þ rNT s1L log LÞ,
where L is the number of elements distributed on
each node.

Proof. By the algorithm of Section 3.3.2, the time

complexity for sorting PGr with f 6 r � 1 faulty

nodes is the sum of the time complexities for sort-

ing a two-dimensional subgraph and the recursive

merging of N sorted sequences into a higher-

dimensional product network in PGr. The deriva-
tion of time complexity is as follows.

FSrðNÞ ¼ T s2T ss þ TM3
þ TM4

þ � � � þ TMr�1 þ TMr

¼ T s2T ss þ ðr � 2Þ
�
T s1T ssðN þ 1Þ

þ 3N
2

� �
þ 2

� �
� N

�

þ 2 T s2T ss þ
3N
2

� �
þ 2

� �� �

�
Xr

i¼3
ði� 2Þ ¼ ððr � 1Þðr � 2Þ þ 1ÞT s2T ss

þ ðr � 2Þðr þ N � 1Þ 3N
2

� �
þ 2

� �

þ ðr � 2ÞðN þ 1ÞT s1T ss:

Since the heap sorting algorithm in the worst

case takes (L � 1)logL + 1 time steps, the time

complexity of Sr(N) becomes

FSrðNÞ ¼ ððr � 1Þðr � 2Þ þ 1ÞT s2ððL� 1Þ log Lþ 1Þ

þ ðr � 2Þðr þ N � 1Þ 3N
2

� �
þ 2

� �

þ ðr � 2ÞðN þ 1ÞSðNÞððL� 1Þ log Lþ 1Þ

¼ Oðr2T s2L log Lþ r2N 2 þ rNT s1L log LÞ:

h

Corollary 11. The time complexity of odd–even
sorting is O(r2N2L logL). If each nonfaulty node

contains only one key, the complexity is O(r2N2).
Proof. In Theorem 10, we know that the time

complexity of our algorithm is Oðr2T s2L log Lþ
r2N 2 þ rNT s1L log LÞ. We spent T s2 ¼ OðN 2Þ time
steps to perform odd–even sorting in PG2 with

the snake order, and T s1 ¼ OðNÞ time steps to
perform odd–even sorting in PG. Therefore, the

time complexity is bounded by O(r2N2L logL).

Note that if L = 1, the time cost becomes

O(r2N2). h

Corollary 12. The time complexity of bitonic sort-

ing is O(r2L logL(log2 N2)2 + r2N2 + rNL logL

(log2 N)2). If each nonfaulty node contains only
one key, the complexity is O(r2(log2 N2)2 + r2N2 +

rN(log2 N)2).

Proof. To perform a bitonic sorting on PG2, we

need

T s2 ¼
Xlog2N2

i¼1
i steps; and T s1 ¼

Xlog2N
i¼1

i

time steps to perform bitonic sorting in PG. There-

fore, the time complexity is

Oðr2L log Lðlog2N 2Þ2 þ r2N 2 þ rNL log Lðlog2NÞ2Þ:
Note that if L = 1, the time complexity is bounded
by O(r2(log2N2)2 + r2N2 + rN(log2N)2). h
4.2. Time complexity of a torus

From Corollary 11, we know that the complex-

ity of our fault-tolerant sorting on a torus is

O(r2N2L logL). Note that if L = 1, the time com-

plexity on a torus is FSr(N) = O(r2N2).
4.3. Time complexity of a grid

The following corollary measures the time com-
plexity of our fault-tolerant sorting algorithm ap-

plied to a grid.

Corollary 13. If PGr is a grid, the time complexity

of sorting on PGr is at most O(r2N2L logL), where L

is the number of elements each node contains.

Fig. 14. Petersen graph.

202 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
Proof. We calculate the time complexity of our

fault-tolerant sorting algorithm on an r-dimen-

sional torus. Then, we refer to the result proposed

in [7] which points out that if G is a connected

graph, PGr can emulate any computation on the
Nr-node r-dimensional torus by embedding the

torus into PGr with a dilation of three and a con-

gestion of two. Since this embedding undergoes

constant dilation and congestion, the emulation

has a constant slowdown. (In fact, the slowdown

is no greater than six). We use the slowdown value

to compute the exact running time for PGr. The

complexity of sorting on r-dimensional torus was
previously proposed as FSr(N) = O(r2N2L logL).

Since the emulation of our algorithm by PGr

requires a slowdown factor of at most six, elements

of the grid can be sorted in a time complex-

ity 6 · Sr(N) = 6 · O(r2N2L logL) = O(r2N2L logL).

Note that if L = 1, the time complexity for the grid

is bounded by FSr(N) = O(r2N2).
4.4. Time complexity of a hypercube

A hypercube has a constant N = 2. We are using

the bitonic sorting operation in the single-fault
sorting algorithm. From Corollary 13, we can

measure the complexity FSr(N) of the fault-toler-

ant sorting of a hypercube:

FSrðNÞ ¼Oðr2L logLþ r2þ rL logLÞ ¼Oðr2L logLÞ:
Table 1

Time complexity comparison of existing sorting and fault-tolerant so

Existing sorting Fault-

algorithms

Tolerant

Torus Unknown

Grid Unknown

Sheu et al. [19] (f 6 r � 1) Chen [4] ðf 6 b3r
2
c � 1Þ

Hyper-

cube

f > 0, f > 0, f > 0, f > 0,

L = 1 L > 1 L = 1 L > 1

O(log22r) O(L logL + L log22r) O(log22r) O(L logL +

Petersen

cube

Unknown

f is the number of faulty nodes, L is the number of elements on each

factor graph.
Note that if L = 1, the time complexity on the

hypercube becomes FSr(N) = O(r2).

4.5. Time complexity of a Petersen cube

The Petersen cube is the r-dimensional product

network of a Petersen graph, as shown in Fig. 14.
The product graphs obtained from the Petersen

graph are studied in [14]. Similar to a hypercube,

the product of a Petersen graph has a constant

N. Since the Petersen graph is Hamiltonian, its

two-dimensional product network contains the

10 · 10 two-dimensional grid as a subgraph. Thus,
we can use a grid algorithm for sorting 100 nodes

on the two-dimensional product of a Petersen
graph in constant time. Consequently, data in
rting algorithms

Fernández and

Efes [8] (without

fault-tolerant)

Our scheme (f 6 r � 1)

f = 0, L = 1 f > 0, L = 1 f > 0, L > 1

O(r2N) O(r2N2) O(r2N2L logL)

O(r2N) O(r2N2) O(r2N2L logL)

O(r2) O(r2) O(r2L logL)

L log22r)

O(r2) O(r2) O(r2L logL)

node, r is the dimension, and N is the number of nodes of the

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 203
the r-dimensional product of a Petersen graph with

10r nodes can be sorted in a time complexity of

O(r2L logL). Note that if L = 1, the time complex-

ity for executing the generalized fault-tolerant

sorting algorithm on a Petersen cube is FSr(N) =
O(r2). Table 1 shows a comparison of time com-

plexity of Fernández and Efes� sorting algorithm
[8], Sheu et al.�s fault-tolerant sorting on a hyper-
cube [19], Chen�s fault-tolerant sorting on a hyper-
cube [4], and our generalized fault-tolerant sorting

algorithm on a product network. The proposed

sorting algorithm is portable for a number of pop-

ular product networks. Note that if L = 1, the time
complexity is bounded by O(r2N2) if the graph is a

grid, and by O(r2) if the graph is a hypercube or

a Petersen cube. Moreover, in the case of L = 1,

the time complexities of hypercube and Petersen

cube are the same with the result in Fernández

and Efes� algorithm. From Table 1, Fernández

and Efes� approach is more efficient when no faults
are present. However, our generalized fault-toler-
ant sorting algorithm is developed to tolerate

faults in the product network. Observe that,

Fernández and Efes� approach cannot work even
if only one fault is occurred. This characteristic

of the performance analysis illustrates the perfor-

mance achievement of the generalized fault-toler-

ant sorting algorithm.
5. Conclusions

In this paper, we present the fault-tolerant sort-

ing algorithm on an r-dimensional product net-

work when the number of faulty nodes is

f 6 r � 1. The proposed algorithm is generalized

and portable for executing sorting operations on
faulty product networks. We first presented the

D-split partitioning scheme for partitioning PGr

into a number of PG2s such that each PG2 contains

at most one faulty node. To tolerate up to one

faulty node, we proposed two single-fault sorting

operations executed on each PG2. We combined

the proposed single-fault sorting operations with

the modified multi-way merging operation as the
basic operation for tolerating multiple faults. The

time complexity of the proposed fault-tolerant

sorting algorithm is O(r2L logL(log2N
2)2 + r2N2 +
rNL logL(log2N)
2) when using bitonic sorting and

is O(r2N2L logL) when using odd–even sorting,

where L is the number of data distributed on each

node and f 6 r � 1. For particular networks, the

time complexity for the grid is O(r2N2L logL)
and for a hypercube and Petersen cube is

O(r2L logL). Note that if L = 1, the time complex-

ities of hypercube, and Petersen cube are the same

as the result in Fernández and Efes� approach.
From Table 1, Fernández and Efes� approach is

more efficient when no faults are present. How-

ever, our generalized fault-tolerant sorting algo-

rithm is developed to tolerate faults in the
product network. Fernández and Efes� approach
cannot work even if one fault is occurred. Conse-

quently, the performance analysis indicates that

our proposed generalized sorting scheme is a truly

efficient fault-tolerant scheme.
References

[1] K.E. Bacher, On bitonic sorting networks, Proceedings

of 1990 International Conference on Parallel Processing I

(1990) 376–379.

[2] K.E. Bacher, Sorting networks and their applications,

Proceedings of AFIPS Spring Joint Computing Conference

(1968) 307–314.

[3] M. Baumslag, F. Annexstein, A unified framework for

offline permutation routing in parallel networks, Mathe-

matical Systems Theory 24 (4) (1991) 233–251.

[4] Y.W. Chen, The design and analysis of fault-tolerant prefix

computation, sorting and embedding algorithms on hyper-

cube, PhD thesis, Graduate School of Management,

National Taiwan University of Science and Technology,

Taipei, 1999.

[5] T.E. Ghazawi, A. Youssef, A general framework for

developing adaptive fault-tolerant routing algorithms,

IEEE Transactions on Reliability 42 (June) (1993) 250–

258.

[6] A. Fernández, Homogeneous product networks for pro-

cessor interconnection, PhD thesis, University of South-

western Louisiana, Lafayette, October 1994.

[7] A. Fernández, K. Efe, Mesh-connected trees: a bridge

between grids and meshes of trees, IEEE Transactions on

Parallel and Distributed Systems 7 (12) (1996) 1281–1291.

[8] A. Fernández, K. Efe, Generalized algorithm for parallel

sorting on product networks, IEEE Transactions on

Parallel and Distributed Systems 8 (12) (1997) 1211–

1225.

[9] A. Fernández, K. Efe, Efficient vlsi layouts for homoge-

neous product networks, IEEE Transactions on Comput-

ers 46 (10) (1997) 1070–1082.

204 Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205
[10] A. Fernández, K. Efe, Product networks with logarithmic

diameter and fixed degree, IEEE Transactions on Parallel

and Distributed Systems 6 (9) (1995) 963–975.

[11] J. Hastad, T. Leighton, M. Newman, Reconfiguring a

hybercube in the presence of faults, 19th Annual ACM

Symposium on Theory of Computing (1987) 274–284.

[12] D.R. }Ohring, D.H. Hohndel, Optimal fault-tolerant com-
munication algorithms on product netowrks using span-

ning trees, Proceedings of Sixth IEEE Symposium on

Parallel and Distributed Processing (1994) 188–195.

[13] D.R. }Ohring, M. Ibel, S.K. Das, Reliable broadcasting in
product networks in the presence of faulty nodes, Pro-

ceedings of Seventh IEEE Symposium on Parallel and

Distributed Processing (1995) 711–718.

[14] S.R. }Ohring, S.K. Das, The folded petersen cube network:

New competitiors for the hypercubes, IEEE Transac-

tions on Parallel and Distributed Systems 7 (2) (1996)

151–168.

[15] D.L. Lee, K.E. Batcher, On sorting multiple bitonic

sequences, Proceedings of 1994 International Conference

on Parallel Processing I (1994) 121–125.

[16] K.J. Liszka, K.E. Batcher, A generalized bitonic sorting

network, Proceedings of 1993 International Conference on

Parallel Processing I (1993) 105–108.

[17] T. Nakatani, S.-T. Hung, B.W. Arden, S.K. Tripathi, K-

way bitonic sort, IEEE Transactions on Computers 38 (2)

(1989) 283–288.

[18] A.L. Rosenberg, Product-shuffle network: Toward recon-

ciling shuffles and butterflies, Discrete Applied Mathemat-

ics 37/38 (1992) 465–488.

[19] J.P. Sheu, Y.S. Chen, C.Y. Chang, Fault-tolerant sorting

algorithm on hypercube multicomputers, Journal of Par-

allel and Distributed Computing 16 (1992) 185–197.

[20] S.-H. Chang, Y.-C. Tseng, J.-P. Sheu, Fault-tolerant ring

embedding in a star graph with both link and node failures,

IEEE Transactions on Parallel and Distributed Systems 8

(12) (1997) 1285–1295.

Yuh-Shyan Chen received the B.S.
degree in Computer Science from
Tamkang University, Taiwan, Repub-
lic of China, in June 1988 and the M.S.
and Ph.D. degrees in Computer Sci-
ence and Information Engineering
from the National Central University,
Taiwan, Republic of China, in June
1991 and January 1996, respectively.
He joined the faculty of Department of
Computer Science and Information
Engineering at Chung-Hua University,
Taiwan, Republic of China, as an

associate professor in February 1996. He joined the Depart-

ment of Statistic, National Taipei University in August 2000,
and then joined the Department of Computer Science and
Information Engineering, National Chung Cheng University in
August 2002. He served as Editor-in-Chief of International
Journal of Ad Hoc and Ubiquitous Computing (IJAHUC),
Editorial Board Member of International Journal of Internet
Protocol Technology (IJIPT) and The Journal of Information,
Technology and Society (JITAS), Guest Editor of Telecom-
munication Systems, special issue on ‘‘Wireless Sensor Net-
works’’ (2004), and Guest Editor of Journal of Internet
Technology, special issue on ‘‘Wireless Internet Applications
and Systems’’ (2002) and special issue on ‘‘Wireless Ad Hoc
Network and Sensor Networks’’ (2004). He was a Workshop
Co-Chair of the 2001 Mobile Computing Workshop, IASTED
Technical Committee on Telecommunications for 2002–2005,
Program Committee Member of IEEE ICPP�2003, IEEE
ICDCS�2004, IEEE ICPADS�2001, IEEE ICCCN�2001–2004,
IASTED CCN�2002–2004, IASTED CSA�2004, IASTED
NCS�2005, and MSEAT�2003–2004. His paper wins the 2001
IEEE 15th ICOIN-15 Best Paper Award. His recent research
topics include mobile ad hoc network, wireless sensor network,
Bluetooth WPANs, mobile computing, mobile learning sys-
tem, and mobile P2P communication. He is a member of the
IEEE Computer Society, IEICE Society, and Phi Tau Phi
Society.

Chih-Yung Chang received the Ph.D.
degree in Computer Science and
Information Engineering from
National Central University, Taiwan,
in 1995. He joined the faculty of the
Department of Computer and Infor-
mation Science at Aletheia University,
Taiwan, as an assistant professor in
1997. He was the Chair of the
Department of Computer and Infor-
mation Science, Aletheia University,
from August 2000 to July 2002. He is
currently an associate professor of

Department of Computer Science and Information Engineering

at Tamkang University, Taiwan. He is a member of Editorial
Board of Tamsui Oxford Journal of Mathematical Sciences and
a member of the IEEE Computer Society and IEICE society.
His current research interests include wireless sensor networks,
mobile learning, Bluetooth radio systems, Ad Hoc wireless
networks, and mobile computing.

Tsung-Hung Lin received the B.S.
degree in Computer Science from
Tamkang University, Taiwan, ROC,
in June 1988 and the M.S. degree in
computer science and information
engineering from National Chung
Cheng University, Taiwan, in 1993. He
is currently a graduate student for the
Ph.D. degree in the Department of
Computer Science and Information
Engineering, National Chung Cheng
University. His research interests
include mobile computing, wireless

sensor network, and WCDMA systems.

Y.-S. Chen et al. / Journal of Systems Architecture 51 (2005) 185–205 205
Chun-Bo Kuo received the M.S.
degrees in Computer Science and
Information Engineering from Chung-
Hua University, Taiwan, ROC, in
June 1999. His research interests
include parallel and distributed pro-
cessing and collective communication.

	A generalized fault-tolerant sorting algorithm on a product network
	Introduction
	Preliminary
	Product network
	Network partitioning

	Generalized fault-tolerant sorting algorithm
	Partitioning scheme for faulty product networks
	Distributing unsorted keys
	Single-fault sorting operation
	Single-fault odd ndash even sorting operation
	Single-fault bitonic sorting operation

	Fault-tolerant multiway merging operation
	Fault-tolerant comparison-exchange operation
	The fault-tolerant multiway merging operation

	Analysis of the time complexity of the �generalized fault-tolerant sorting algorithm
	Generalized time complexity
	Time complexity of a torus
	Time complexity of a grid
	Time complexity of a hypercube
	Time complexity of a Petersen cube

	Conclusions
	References

